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LElTER TO THE EDITOR 

Localization in a dynamically disordered, dissipative 
medium: a model for l/” noise 

J Heinrichs 
Institut de Physique BS, Univeail6 de Liege, San lilman. B 4 0 M  Liege, Belgium 

Received 30 March 1992, in final form 26 May 1992 

AbrtracL We sludy the molion of a quantum panicle in a dynamically disordered 
tight-binding lattice, including a frictional dissipative interaction. The mean square dis- 
placement evolves from free-panicle motion a1 initial times approaching a iinite stationary 
form at long times. This localization due to frictional slowing down of diffusion leads 10 
1 f f noise, using a scaling argument. 

The study of the motion of a quantum particle in a dynamically disordered lattice 
has attracted much attention recently because of its relevance to various charge and 
excitation transport processes in molecular solids and, also, to the diffusion of light 
atoms on solid surfaces. 

Here we focus on the simplest case of a one-dimensional tight-binding lattice with 
dynamically fluctuating energies of oneabital atomic sites. The long-time motion of 
a particle, placed initially on a given site of such a lattice, is known to be diffusive 
[l, 21. The existence of this diffusive motion has also been confirmed for a quantum 
particle in a dynamically disordered continuous-space potential [3]. The diffusion 
constant has, furthermore, been calculated in more general cases, e.g., when both the 
site energies and the nearest-neighbour hopping integrals have randomly fluctuating 
components [l] and for higher-dimensional modes [4]. 

As is well known, the fluctuations of the site energies, which act as a time- 
dependent random potential, are caused by incoherent thermal vibrations of the 
lattice. On the other hand, the thermal fluctuations are atso affected by the motion 
of the particle itself and this leads to an additional dissipative frictional force which 
tends to restore the particle to equilibrium, in much the same way as in Brownian 
motion theory [SI. The frictional force is expected to play an important role, just 
as in Brownian motion where its omission changes the motion from diffusive to 
superdiffusive [6]. 

In this letter we report a simple analysis of the effect of dissipation on the 
motion of a quantum particle in a dynamically disordered lattice. As an important 
by-product, our results suggest a new general explanation for 1/ f noise in t e r m  of 
dynamic randomness on a lattice and the concomitant friction. 

The correct quantum-mechanical description of dissipation involves the frictional 
coupling of the particle to a bath of harmonic oscillator degrees of freedom [7l. 
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However, since this approach is not easy to implement in analytical treatments we 
shall adopt an alternative description in terms of a simple frictional Hamiltonian IS] 

H = (p2/2m)e-" +V(z,t)e7'  (1) 

which yields a classical Langevin equation of motion with a frictional force -yp and a 
dynamically fluctuating random force -aV( z , t ) / a z .  Here V(+,  t )  is usually taken 
to be Gaussian and &correlated in time: 

( V ( I , t ) V ( Z ' , t ' ) )  = v : g ( + - + ' ) c 5 ( t -  t ') (2)  

and (. . .) denotes a statistical average over the ensemble of realizations of V ( z ,  1 ) .  
Despite some well-known difficulties inherent to thc quantization of the Hamiltonian 
(1). it has been used extensively (for non-random potentials) for describing frictional 
effects in other systems, e.g. nuclear reactions [SI. In the context of dynamical 
disorder, the use of random frictional Hamiltonians is supported by a recent quantum- 
mechanical derivation of Brownian motion based on such a Hamiltonian [9]; since this 
treatment yields the same mean square displacement at long times as the Langevin 
model [9], it is believed that the deficiency of (1) from the quantum point of view is 
unimportant as far as the form of the MSD for t -+ CO is concerned. 

In order to describe the analogous frictional dissipation for a lattice we start from 
the continuum limit (lattice parameter a i 0) of the tight-binding model referred to 
above, where the Hamiltonian has the form [IO] 

B = -hz('lm)-'az/azz+ V ( z , t ) , V ( z , t )  = € ( Z , t ) + Z V .  

Here c ( z , t )  = ~ ~ ( 1 )  is the continuum limit of an electron's site energy in a fixed 
atomic orbital I+) F l j )  centred at a site I = j a ,  V is the constant hopping integral 
between nearest neighbours on the lattice and m = -h2(2a2V)-' is the electron's 
effective mass. After including friction in this continuum Hamiltonian, using thc 
prescription of (l), we revert back to the case of a lattice and obtain the following 
frictional tight-binding Hamiltoniant [ll]: 

W = x [ c , ( t ) e "  + 4Vsinhyt] \n)(ni  + Ve-"CIn)(n  + 61 d = fl (3) 

where the dynamically fluctuating site energies ~ " ( 1 )  are assumed to have a Gaussian 
white-noise spectrum 

n n J  

( e , , , ( t ) e n ( t ' ) )  = ~;6,,,6(t - t ' )  ( e , )  = 0. (4) 

In the continuum limit they correspond to potential fluctuations with a vanishing 
correlation length, i.e., g(z - z') = 6(z  - I ' ) .  The tight-binding Hamiltonian (3) 
with y = 0, and fluctuating site energies obeying (4) has been used, in particular, for 
modelling the motion of carriers in narrow-band molecular solids at high tempera- 
tures (see [l, 21 and references therein). As mentioned above, random fluctuations in 
time of the potential (site energy) are only one part of the effect of the coupling to 
thermal lattice vibrations-the latter also cause dissipation in the system, as is evident 
from the fluctuation-dissipation theorem. A consistent treatment of the coupling to 

t The Hamiltonian (3) diKen from the approximate irictional Hamiltonian for a lattice in the one-band 
tight-binding limit derived by N Kumar (see [ll]). 
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thermal vibrations must, therefore, include both effects simultaneously. The form of 
the dependence of the Hamiltonian (1) on the friction constant has been obtained 
by requiring Hamilton's equations to reduce to the Langevin equation in the classical 
case. However, due to the lack of a detailed quantum derivation of (1) from the 
coupling to an oscillator bath describing phonons, it remains essentially phenomeno- 
logical (for the large body of relevant references and the sense in which (1) is justified 
quantum mechanically, see the review by Dekker [SI). 

In order to study the motion of an electron, we expand the time-dependent wave- 
function in the site representation, $ ( t )  E, a,(t) ln),  and rewrite Schrodinger's 
evolution equation for the Hamiltonian (3). iha$(t) /a t  = H+(t), in the form of 
coupled equations for the density matrix elements pmm(t) = ak(t)a,(t) :  

ih dp,, = e'l[c,(t) - E,(t)lP,, - ve-'' ~ ( P m t 6 , ,  - Pm,,,+6). (5)  
6 

d t  

Since p,,(t) are functionals of the set of Gaussian variables {. . . , e m ( t ) ,  . . .} we 
can use Novikov's theorem in conjunction with causality (i.e. we assume that p i j ( l )  
depends on {... cm(t') . . . I  for ti < t only) to derive closed equations for the 
averages ( p i , ) ,  following, essentially, the previous treatments for 7 = 0 11, 21. We 
thus obtain the equations of motion 

which will be solved subject to the initial condition ( p m n ( 0 ) )  = p,,(O) = 
~5,,~6,,, corresponding to a particle located at the origin at t = 0. ?b 
this end we define Fourier transforms on a lattice with N sites, a,(t) = (a)-' C k  a,( t )  exp(ikma),  using periodic boundaly conditions, i.e., amtN(t) = 
a,(t), which yields k = (2np /Na) ,  p = 0,1,. . . , N - 1. Thus by inverting (6) we 
get 

(7) 
2 vi V 

~ dpkkr - - _ _  'Qe2-rc ( p k k ,  - A k k , )  + -e-"(coska - cosk'a)pkk, d t  h2 A 

where 

p k k , ( t )  = N-' x ( p m n ( t ) ) e x p ( i k m a  -ik 'na) p k k , ( 0 )  = N-' 
m +  

and 

The mean square displacement may be expressed as 

a2'ik,0(t) N 

( ~ ~ ( 1 ) )  = lim z ( j a ) ' ( p j j ( t ) )  = - lim NRe  d ~ , - 2  . 
N-m . N-m,k-O 

,=1 

The equations (7) cannot be solved exactly for 7 + 0. However, since we expect 
( z 2 ( t ) )  to be proportional to the 'inverse mass' squared (as is, indeed, the case for 
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y = 0), it is suficient to treat the effect of the hopping term h (7) in second-order 
perturbation theory. In contrast, the 'potential energy term' must be treated exactly, 
since, e.g., for y = 0. ( ~ ~ ( 1 ) )  is proportional to 11, 21. 

The solution for A k k , ( t ) .  which is exact to order V2, is given by 

It is obtained by quadraturest from an expansion to successive orders in V of (7) 
and of the equation 

which follows from (7), noting that Ak+k,, ,k,+k,,  = A k k ,  (periodic boundary condi- 
tions). From (8) and (9) we then obtain, after some calculations, 

( ~ ' ( 1 ) )  = ( 4 V Z a 2 / y h 2 ) [ ( ~ ~ / h 2 ) ~ ( a , t )  + K ( a , t ) ]  (10) 

where 

exp(aeay"' )[1 - e-T"'-*'')] 

In the limit of weak dissipation, y < 4/2h2,  the time integrals may be performed 
explicitly in the form of a sum of contributions proportional to successive powers of 
l / a .  Neglecting exponentially decreasing terms (proportional to exp(-aeaTt), we 
obtain, for yt  > 1, 
( z 2 ( t ) )  = ( 2 V Z a 2 h 2 / e ~ ) [ ( e ~ / 2 h 2 r ) ( 1  -e- '" [ )  - 13 -e-6Tf t O ( l / a ) ] .  (11) 

This shows that the particle remains located within a finite distance ,/- from 
the initial site, as a result of frictional slowing down of the diffusion [ l ,  21. On the 
other hand, by expanding (loa) in powers of y for y - 0  and retaining zero-order 
terms, we obtain 

1 )I (12) ( r2 ( t ) )  = ( 4 P a 2 / 4 ) [ t  t ( h z / e i ) ( e -  &/I? - 

which is in agreement with the previous results in the absence of dissipation 11, 21. 
For the sake of completeness we also include the form of the mean square 

displacement when the time-dependent random potential vanishes, namely at T = 
0 (where eo = 0 [l, 21). From (10) and (loa) we then have (~ ' (1 ) )  = 
2V2a2y-2h-2(l - e--7')', which describes the gradual freezing of the initial bal- 
listic evolution, ( d ( t ) )  = 2V2a2h-2t2. 

t Also note the identity N-' C[cos(k  + kJ' )a - cos(E'+ k")aI2 = 1 - cos(b - k ' ) o .  
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An important consequence of the constancy of the mean square displacement for 
t -+ 00 is the existence of 1/ f excess noise [12]. This follows from standard heuristic 
arguments. The noise associated with a physical variable z ( t )  is described by the 
spectral density [13] defined by 

For a statistically stationaly random variable 151, such as the displacement of a particle 
in the present case ((z2(t -+ co)) = constant ,  (ll)), this expression simplilies to 15, 
131 

S ( w )  = 4  d T ( z ( T + t ) z ( t ) ) c o s w T  (14) 1- 
where t is an arbitraly origin within the asymptotic domain of (11). In order to extract 
the frequency dependence of S(w) we then invoke a dynamic scaling assumption 
similar to that discussed by Marinari et a1 1141. Thus we assume that for large t 
the auto correlation function ( X ( T  + t )r( t ) )  is determined by the unique length 
E ( t )  = ( ~ * ( t ) ) ~ / ~  such that [15] 

(.(. + W t ) )  = E2( t ) f1(T + 9 / t I  f(1) = 1 t -00 .  (15) 

By inserting this expression in (14), for t = U-', T = y t ,  we obtain 

which, according to (ll), implies pure low-frequency 1/ f noise due to the localization 
of a particle on a lattice under the influence of dynamical randomness and the 
concomitant dissipationt. 

Our model has three vely desirable features of a theory of 1/ f noise: 

(i) it yields a pure 1/ f spectrum at low frequencies, which has proved difficult to  
achieve theoretically-for example, Marinari et a1 [14] obtain 1/ f noise only up to  a 
logarithmic correction factor; 

(ii) the noise is an equilibrium phenomenon, as is frequently assumed 112, 141- 
indeed dynamic correlations of the form (4) with e: a T are a direct consequence 
of equilibrium autocorrelations of atomic displacements at temperatures much higher 
than the Debye phonon energy [1,2]; 

(iii) it depends on a general mechanism-a dynamically fluctuating potential (site 
energies) and the concomitant frictional dissipation-which may be operating in many 
different systems showing 1 / f noise at finite temperatures. This mechanism is very 
similar to the one controlling Brownian motion in the standard Langevin theory. 

t The form (16) for w -+ 0 leads to a logarithmic divergence of the LHS of a relation (which follows 
from (13)) [13] (Zn)-' JFdsrS(w) = limT_,T-'SOTdt(*z(t)), while the w is finite. We note 
that this drawback is shared by ultra-slow diffusion models of 1 f f noise such as the Sinai walk on a 
random medium [14]. In the latter case, using the result for S(w) obtained in [14], the LHS of the above 
relation is found to diverge as while the RHS diverges as (In t ) ' .  
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It follows that, just as the Langevin model enables one to understand Brownian 
motion in different physical systems, the above analysis of a similar model on a lattice 
may provide a common basis for the 1 / f noise Observed for transport in very diverse 
systems. The 1 /  f noise is a direct consequence of the localization of the particle in 
the fluctuating, dissipative medium, which we have demonstrated for the first time. 
After the submission of this letter we found that the same type of localization and 
resulting l / f  noise also exist for a continuum described by the Hamiltonian (1) with 
a random potcntial which is &correlated in time as well as in space. This is not 
surprising, since in the absence of friction the continuum Hamiltonian and the tight- 
binding Hamiltonian (3) lead to the same type of quantum diffusion 131. The results 
for the continuum case have been obtained from a straightfolward generalization of 
the treatment of [3]. 

We conclude by recalling that we have used the Hamiltonian (3) for the purpose 
of discussing the effect of the frictional force on the diffusive evolution of the mean 
square displacement on a lattice at finite temperatures 11, 21. Since the diffusive 
motion, which is a basic aspect of our model for dynamic localization, has so far 
not been derived from a microscopic approach to dynamic disorder 171, a detailed 
comparison with the latter approach appears premature. 
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